5 years ago

Receptor heterogeneity in optical biosensors

David A. Edwards, Ryan M. Evans

Abstract

Scientists measure rate constants associated with biochemical reactions in an optical biosensor—an instrument in which ligand molecules are convected through a flow cell over a surface to which receptors are immobilized. We quantify transport effects on such reactions by modeling the associated convection-diffusion equation with a reaction boundary condition. In experimental situations, the full PDE model reduces to a set of unwieldy integrodifferential equations (IDEs). Employing common physical assumptions, we may reduce the system to an ODE model, which is more useful in practice, and which can be easily adapted to the inverse problem of finding rate constants. The results from the ODE model compare favorably with numerical simulations of the IDEs, even outside its range of validity.

Publisher URL: https://link.springer.com/article/10.1007/s00285-017-1158-x

DOI: 10.1007/s00285-017-1158-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.