3 years ago

Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material

Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material
Sahng Ha Lee, Jinhyun Kim, Su Keun Kuk, Jong Wan Ko, Chan Beum Park, Woo Seok Choi
Peptide self-assembly is a facile route to the development of bioorganic hybrid materials that have sophisticated nanostructures toward diverse applications. Here, we report the synthesis of self-assembled peptide (Fmoc-diphenylalanine, Fmoc-FF)/graphitic carbon nitride (g-C3N4) hydrogels for light harvesting and biomimetic photosynthesis through noncovalent interactions between aromatic rings in Fmoc-FF nanofibers and tris-s-triazine in g-C3N4 nanosheets. According to our analysis, the photocurrent density of the Fmoc-FF/g-C3N4 hydrogel was 1.8× higher (0.82 μA cm–1) than that of the pristine g-C3N4. This is attributed to effective exfoliation of g-C3N4 nanosheets in the Fmoc-FF/g-C3N4 network, facilitating photoinduced electron transfers. The Fmoc-FF/g-C3N4 hydrogel reduced NAD+ to enzymatically active NADH under light illumination at a high rate of 0.130 mol g–1 h–1 and drove light-responsive redox biocatalysis. Moreover, the Fmoc-FF/g-C3N4 scaffold could well-encapsulate key photosynthetic components, such as electron mediators, cofactors, and enzymes, without noticeable leakage, while retaining their functions within the hydrogel. The prominent activity of the Fmoc-FF/g-C3N4 hydrogel for biomimetic photosynthesis resulted from the easy transfer of photoexcited electrons from electron donors to NAD+ via g-C3N4 and electron mediators as well as the hybridization of key photosynthetic components in a confined space of the nanofiber network.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00889

DOI: 10.1021/acs.biomac.7b00889

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.