3 years ago

Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths

Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths
Ahmed M. El-Zohry, Chen Yang, Omar F. Mohammed, Jun Yin, Erkki Alarousu, Anton V. Malko, Ahmed AlSaggaf, Osman M. Bakr, Ayan A. Zhumekenov, Issam Gereige, Esra Alhabshi
Organic–inorganic hybrid perovskite materials have recently evolved into the leading candidate solution-processed semiconductor for solar cells due to their combination of desirable optical and charge transport properties. Chief among these properties is the long carrier diffusion length, which is essential to optimizing the device architecture and performance. Herein, we used time-resolved photoluminescence (at low excitation fluence, 10.59 μJ·cm–2 upon two-photon excitation), which is the most accurate and direct approach to measure the radiative charge carrier lifetime and diffusion lengths. Lifetimes of about 72 and 4.3 μs for FAPbBr3 and FAPbI3 perovskite single crystals have been recorded, presenting the longest radiative carrier lifetimes reported to date for perovskite materials. Subsequently, carrier diffusion lengths of 107.2 and 19.7 μm are obtained. In addition, we demonstrate the key role of the organic cation units in modulating the carrier lifetime and its diffusion lengths, in which the defect formation energies for FA cations are much higher than those with the MA ones.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01922

DOI: 10.1021/acs.jpclett.7b01922

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.