5 years ago

Noninvasive Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Based on Sample Differential Transmittance

Noninvasive Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Based on Sample Differential Transmittance
Pavel Matousek, Benjamin Gardner, Nicholas Stone
Here we propose a simple noninvasive approach to determine the depth of a buried object using transmission Raman spectroscopy. In accordance with theory, the photons arising from spectral peaks that are suitably separated will be subjected to different optical properties in the media through which they travel. These differences can impact the relative intensities of Raman peaks as a function of the transmission path length, thereby the depth of signal generation is inherently encoded in the spectra. In a proof-of-concept study, through only external calibrations, it was possible to accurately predict the depth of Polytetrafluoroethylene (PTFE) layer purely on the basis of relative intensity of two peaks in a predominantly absorbing solution Indian ink (0.1 μL/mL; RMSE 0.42 mm) and a scattering solution (RMSE 0.50 mm). This simple approach offers the possibility to noninvasively identify the depth of a buried object, such as breast calcifications, using simple transmission measurement geometries for the first time.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01469

DOI: 10.1021/acs.analchem.7b01469

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.