5 years ago

Artesunate-derived monomeric, dimeric and trimeric experimental drugs – Their unique mechanistic basis and pronounced antiherpesviral activity

Human cytomegalovirus (HCMV) is a major human pathogen and is associated with severe pathology, such as life-threatening courses of infection in immunocompromised individuals and neonates. Currently, antiviral therapy is still hampered by a considerable toxicity of the available drugs and induction of viral resistance. Recently, we and others reported the very potent antiviral activity of the broad antiinfective drug artesunate in vitro and in vivo. Here, we investigated further optimized analogs including monomeric, dimeric and trimeric derivatives belonging to this highly interesting chemical group of experimental drugs (sesquiterpenes/trioxanes) and compared these to the previously identified trimeric artesunate compound TF27. We could demonstrate that (i) seven of the eight investigated monomeric, dimeric and trimeric artesunate derivatives, i.e. TF79, TF85, TF87, TF93.2.4, TF111, TF57a and TF57ab, exerted a strong anti-HCMV activity in primary human fibroblasts, (ii) the EC50 values ranged in the low to sub-micromolar concentrations and indicated a higher antiviral potency than the recently described artesunate analogs, (iii) one trimeric compound, TF79, showed a very promising EC50 of 0.026 ± 0.002 μM, which even exceled the antiviral potency of TF27 (EC50 0.04 ± 0.01 μM), (iv) levels of cytotoxicity (quantitative measurement of lactate dehydrogenase release) were low in a range between 100 and 30 μM and thus different from antiviral concentrations, (v) an analysis of protein expression levels indicated a potent block of viral protein expression, and (vi) data from a NF-κB reporter cell system strongly suggested that these compounds share the same antiviral mechanism. Taken together, our data on these novel compounds strongly encourages our earlier concept on the oligomerization and hybridization of artesunate analogs, providing an excellent platform for the generation of antiherpesviral drugs.

Publisher URL: www.sciencedirect.com/science

DOI: S0166354217308392

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.