5 years ago

Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction

Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction
Mohammadreza Karamad, Xinyan Liu, Jens K. Nørskov, Christopher Hahn, Daniel A. Torelli, Karen Chan, Michael T. Tang, Kyle Cummins, Jianping Xiao, Thomas F. Jaramillo, Nathan S. Lewis, Zachary W. Ulissi
Bimetallic catalysts are promising for the most difficult thermal and electrochemical reactions, but modeling the many diverse active sites on polycrystalline samples is an open challenge. We present a general framework for addressing this complexity in a systematic and predictive fashion. Active sites for every stable low-index facet of a bimetallic crystal are enumerated and cataloged, yielding hundreds of possible active sites. The activity of these sites is explored in parallel using a neural-network-based surrogate model to share information between the many density functional theory (DFT) relaxations, resulting in activity estimates with an order of magnitude fewer explicit DFT calculations. Sites with interesting activity were found and provide targets for follow-up calculations. This process was applied to the electrochemical reduction of CO2 on nickel gallium bimetallics and indicated that most facets had similar activity to Ni surfaces, but a few exposed Ni sites with a very favorable on-top CO configuration. This motif emerged naturally from the predictive modeling and represents a class of intermetallic CO2 reduction catalysts. These sites rationalize recent experimental reports of nickel gallium activity and why previous materials screens missed this exciting material. Most importantly these methods suggest that bimetallic catalysts will be discovered by studying facet reactivity and diversity of active sites more systematically.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01648

DOI: 10.1021/acscatal.7b01648

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.