5 years ago

Robot manipulator control using neural networks: A survey

Robot manipulators are playing increasingly significant roles in scientific researches and engineering applications in recent years. Using manipulators to save labors and increase accuracies are becoming common practices in industry. Neural networks, which feature high-speed parallel distributed processing, and can be readily implemented by hardware, have been recognized as a powerful tool for real-time processing and successfully applied widely in various control systems. Particularly, using neural networks for the control of robot manipulators have attracted much attention and various related schemes and methods have been proposed and investigated. In this paper, we make a review of research progress about controlling manipulators by means of neural networks. The problem foundation of manipulator control and the theoretical ideas on using neural network to solve this problem are first analyzed and then the latest progresses on this topic in recent years are described and reviewed in detail. Finally, toward practical applications, some potential directions possibly deserving investigation in controlling manipulators by neural networks are pointed out and discussed.

Publisher URL: www.sciencedirect.com/science

DOI: S0925231218300158

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.