5 years ago

Heterogeneous SPCNN and its application in image segmentation

Based on the fact that actual cerebral cortex has different structure, a new heterogeneous simplified pulse coupled neural network (HSPCNN) model is proposed in this paper for image segmentation. HSPCNN is constructed with several simplified pulse coupled neural network (SPCNN) models, which have different parameters corresponding to different neurons. An image is segmented by HSPCNN into several regions according to their gray levels. Moreover, the parameter of HSPCNN is set automatically in this paper, the experimental segmentation results of the gray natural images from the Berkeley Segmentation Dataset (BSD 300) show the validity and efficiency of the proposed segmentation method. Finally, an evaluation index is proposed to measure the segmentation result.

Publisher URL: www.sciencedirect.com/science

DOI: S0925231218300699

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.