4 years ago

Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative

Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative
Katarina Leko, Marija Cvetnić, Nikola Cindro, Ivana Nikšić-Franjić, Leo Frkanec, Katarina Pičuljan, Josip Požar, Vladislav Tomišić, Ivana Borilović
The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na+ cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL+ complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL+ stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b05093

DOI: 10.1021/acs.jpcb.7b05093

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.