3 years ago

A Weakly Coordinating Anion Substantially Enhances Carbon Dioxide Fixation by Calcium and Barium Salts

A Weakly Coordinating Anion Substantially Enhances Carbon Dioxide Fixation by Calcium and Barium Salts
Nadezhda A. Andreeva, Pavel N. Vorontsov-Velyaminov, Vitaly V. Chaban
Carbon dioxide fixation and storage constitute a drastically important problem for humanity nowadays. We hereby publish a new solution based on the alkaline earth salts with a weakly coordinating anion, tetrakis(pentafluorophenyl)borate. The proposed solution was validated using a robust combination of global minimum search and molecular dynamics simulations utilizing a well-tested, reliable semiempirical Hamiltonian to monitor chemical reactions. Calcium tetrakis(pentafluorophenyl)borate captures 5.5 CO2 molecules per calcium atom, whereas barium tetrakis(pentafluorophenyl)borate captures 3.6 CO2 molecules per calcium atom. These capacities are much higher, as compared to the established carbonate technology, which fixes only one CO2 molecule per one metal atom. The conducted simulations reveal that electrostatic binding of CO2 to alkaline earth cations is more technologically interesting than formation of carbonate salts. Our simulation results can be directly validated by sorption measurements.

Publisher URL: http://dx.doi.org/10.1021/acs.energyfuels.7b01024

DOI: 10.1021/acs.energyfuels.7b01024

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.