3 years ago

Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites

Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites
Stefan Grimme, Philipp Pracht, Christoph Alexander Bauer
We present an automated quantum chemical protocol for the determination of preferred protonation sites in organic and organometallic molecules containing up to a few hundred atoms. It is based on the Foster–Boys orbital localization method, whereby we automatically identify lone pairs and π orbitals as possible protonation sites. The method becomes efficient in conjunction with the robust and fast GFN-xTB semiempirical method proposed recently (Grimme et al., J. Chem. Theory Comput. 2017, 13, 1989). The protonated isomers that are found within a few seconds to minutes of computational wall-time on a standard desktop computer are then energetically refined using density functional theory (DFT), where we use a high-level double-hybrid reference method to benchmark GFN-xTB and low-cost DFT approaches. The proposed DFT/GFN-xTB/LMO composite protocol is generally applicable to almost arbitrary molecules including transition metal complexes. Importantly it is found that even in electronically complicated cases, the GFN-xTB optimized protomer structures are reasonable and can safely be used in single-point DFT calculations. Corrections from energy to free energy mostly have a small effect on computed protomer populations. The resulting protomer equilibrium is valuable, for example, in the context of electrospray ionization mass spectrometry where it may help identify the ionized species and assist the interpretation of the experiment. © 2017 Wiley Periodicals, Inc. We use our efficient semiempirical GFN-xTB quantum chemistry method to automatically screen protonation sites in organic and organometallic molecules. The resulting structures are re-evaluated energetically by DFT to describe the gas phase protomer equilibrium, which is useful in the context of electrospray ionization mass spectrometry.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.24922

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.