5 years ago

Stochastic Wasserstein Barycenters.

Edward Chien, Sebastian Claici, Justin Solomon

We present a stochastic algorithm to compute the barycenter of a set of probability distributions under the Wasserstein metric from optimal transport. Unlike previous approaches, our method extends to continuous input distributions and allows the support of the barycenter to be adjusted in each iteration. We tackle the problem without regularization, allowing us to recover a sharp output whose support is contained within the support of the true barycenter. We give examples where our algorithm recovers a more meaningful barycenter than previous work. Our method is versatile and can be extended to applications such as generating super samples from a given distribution and recovering blue noise approximations.

Publisher URL: http://arxiv.org/abs/1802.05757

DOI: arXiv:1802.05757v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.