PRoST: Distributed Execution of SPARQL Queries Using Mixed Partitioning Strategies.
The rapidly growing size of RDF graphs in recent years necessitates distributed storage and parallel processing strategies. To obtain efficient query processing using computer clusters a wide variety of different approaches have been proposed. Related to the approach presented in the current paper are systems built on top of Hadoop HDFS, for example using Apache Accumulo or using Apache Spark. We present a new RDF store called PRoST (Partitioned RDF on Spark Tables) based on Apache Spark. PRoST introduces an innovative strategy that combines the Vertical Partitioning approach with the Property Table, two preexisting models for storing RDF datasets. We demonstrate that our proposal outperforms state-of-the-art systems w.r.t. the runtime for a wide range of query types and without any extensive precomputing phase.
Publisher URL: http://arxiv.org/abs/1802.05898
DOI: arXiv:1802.05898v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.