5 years ago

Multi-Task Pharmacovigilance Mining from Social Media Posts.

Shaika Chowdhury, Philip S. Yu, Chenwei Zhang

Social media has grown to be a crucial information source for pharmacovigilance studies where an increasing number of people post adverse reactions to medical drugs that are previously unreported. Aiming to effectively monitor various aspects of Adverse Drug Reactions (ADRs) from diversely expressed social medical posts, we propose a multi-task neural network framework that learns several tasks associated with ADR monitoring with different levels of supervisions collectively. Besides being able to correctly classify ADR posts and accurately extract ADR mentions from online posts, the proposed framework is also able to further understand reasons for which the drug is being taken, known as 'indication', from the given social media post. A coverage-based attention mechanism is adopted in our framework to help the model properly identify 'phrasal' ADRs and Indications that are attentive to multiple words in a post. Our framework is applicable in situations where limited parallel data for different pharmacovigilance tasks are available.We evaluate the proposed framework on real-world Twitter datasets, where the proposed model outperforms the state-of-the-art alternatives of each individual task consistently.

Publisher URL: http://arxiv.org/abs/1801.06294

DOI: arXiv:1801.06294v5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.