5 years ago

Quantitative Constraints on the Reionization History from the IGM Damping Wing Signature in Two Quasars at z > 7.

Jinyi Yang, Feige Wang, Frederick B. Davies, Chiara Mazzucchelli, Fabian Walter, Emanuele P. Farina, Hans-Walter Rix, Zarija Lukić, Joseph F. Hennawi, Bram P. Venemans, Xiaohui Fan, Roberto Decarli, Eduardo Bañados

During reionization, neutral hydrogen in the intergalactic medium (IGM) imprints a damping wing absorption feature on the spectrum of high-redshift quasars. A detection of this signature provides compelling evidence for a significantly neutral Universe, and enables measurements of the hydrogen neutral fraction $x_{\rm HI}(z)$ at that epoch. Obtaining reliable quantitative constraints from this technique, however, is challenging due to stochasticity induced by the patchy inside-out topology of reionization, degeneracies with quasar lifetime, and the unknown unabsorbed quasar spectrum close to rest-frame Ly$\alpha$. We combine a large-volume semi-numerical simulation of reionization topology with 1D radiative transfer through high-resolution hydrodynamical simulations of the high-redshift Universe to construct models of quasar transmission spectra during reionization. Our state-of-the-art approach captures the distribution of damping wing strengths in biased quasar halos that should have reionized earlier, as well as the erosion of neutral gas in the quasar environment caused by its own ionizing radiation. Combining this detailed model with our new technique for predicting the quasar continuum and its associated uncertainty, we introduce a Bayesian statistical method to jointly constrain the neutral fraction of the Universe and the quasar lifetime from individual quasar spectra. We apply this methodology to the spectra of the two highest redshift quasars known, ULAS J1120+0641 and ULAS J1342+0928, and measured volume-averaged neutral fractions $\langle x_{\rm HI} \rangle(z=7.09)=0.48^{+0.26}_{-0.26}$ and $\langle x_{\rm HI} \rangle(z=7.54)=0.60^{+0.20}_{-0.23}$ (posterior medians and 68% credible intervals) when marginalized over quasar lifetimes of $10^3 \leq t_{\rm q} \leq 10^8$ years.

Publisher URL: http://arxiv.org/abs/1802.06066

DOI: arXiv:1802.06066v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.