Solar-System Studies with Pulsar Timing Arrays.
High-precision pulsar timing is central to a wide range of astrophysics and fundamental physics applications. When timing an ensemble of millisecond pulsars in different sky positions, known as a pulsar timing array (PTA), one can search for ultra-low-frequency gravitational waves (GWs) through the spatial correlations that spacetime deformations by passing GWs are predicted to induce on the pulses' times-of-arrival (TOAs). A pulsar-timing model, requires the use of a solar-system ephemeris (SSE) to properly predict the position of the solar-system barycentre, the (quasi-)inertial frame where all TOAs are referred. Here, I discuss how while errors in SSEs can introduce correlations in the TOAs that may interfere with GW searches, one can make use of PTAs to study the solar system. I discuss work done within the context of the European Pulsar Timing Array and the International Pulsar Timing Array collaborations. These include new updates on the masses of planets from PTA data, first limits on masses of the most massive asteroids, and comparisons between SSEs from independent groups. Finally, I discuss a new approach in setting limits on the masses of unknown bodies in the solar system and calculate mass sensitivity curves for PTA data.
Publisher URL: http://arxiv.org/abs/1802.05665
DOI: arXiv:1802.05665v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.