Single Transits and Eclipses Observed by K2.
Photometric survey data from the Kepler mission have been used to discover and characterize thousands of transiting exoplanet and eclipsing binary (EB) systems. These discoveries have enabled empirical studies of occurrence rates which reveal that exoplanets are ubiquitous and found in a wide variety of system architectures and physical compositions. Because the detection strategy of these missions is most sensitive to short orbital periods, the vast majority of these objects reside within 1 AU of their host star. Although other detection techniques have successfully identified exoplanets at wider orbits beyond the snow lines of their respective host stars (e.g., radial velocity, microlensing, direct imaging), occurrence rates within this population remain poorly constrained. As such, identifying long period objects (LPOs) from archival Kepler and K2 data is valuable from both a statistical and theoretical standpoint, particularly for massive gas giants which are thought to heavily influence the formation and evolution dynamics of their respective systems. Here we present a catalog of 164 single transit and eclipse candidates detected during a comprehensive survey of all currently available K2 data.
Publisher URL: http://arxiv.org/abs/1802.05823
DOI: arXiv:1802.05823v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.