Hidden spin current in doped Mott antiferromagnets.
We investigate the nature of doped Mott insulators using exact diagonalization and density matrix renormalization group methods. Persistent spin currents are revealed in the ground state, which are concomitant with a nonzero total momentum or angular momentum associated with the doped hole. The latter determines a nontrivial ground state degeneracy. By further making superpositions of the degenerate ground states with zero or unidirectional spin currents, we show that different patterns of spatial charge and spin modulations will emerge. Such anomaly persists for the odd numbers of holes, but the spin current, ground state degeneracy, and charge/spin modulations completely disappear for even numbers of holes, with the two-hole ground state exhibiting a d-wave symmetry. An understanding of the spin current due to a many-body Berry-like phase and its impact on the momentum distribution of the doped holes will be discussed.
Publisher URL: http://arxiv.org/abs/1802.05977
DOI: arXiv:1802.05977v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.