Time-spliced X-ray Diffraction Imaging.
Diffraction imaging of non-equilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different delays in a time-resolved experiment. This is used to image the time and space evolution of antiferromagnetic order in a complex oxide heterostructure from measurements of a resonant soft X-ray diffraction peak. Mid-infrared excitation of the substrate is shown to lead to a magnetic front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.
Publisher URL: http://arxiv.org/abs/1706.01718
DOI: arXiv:1706.01718v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.