5 years ago

Exact large-scale correlations in integrable systems out of equilibrium.

Benjamin Doyon

Using the theory of generalized hydrodynamics (GHD), we derive exact Euler-scale dynamical two-point correlation functions of conserved densities and currents in inhomogeneous, non-stationary states of many-body integrable systems with weak space-time variations. This extends previous works to inhomogeneous and non-stationary situations. Using GHD projection operators, we further derive formulae for Euler-scale two-point functions of arbitrary local fields, purely from the data of their homogeneous one-point functions. These are new also in homogeneous generalized Gibbs ensembles. The technique is based on combining a fluctuation-dissipation theorem along with the exact solution by characteristics of GHD, and gives a recursive procedure able to generate $n$-point correlation functions. Owing to the universality of GHD, the results are expected to apply to quantum and classical integrable field theory such as the sinh-Gordon model and the Lieb-Liniger model, spin chains such as the XXZ and Hubbard models, and solvable classical gases such as the hard rod gas and soliton gases. In particular, we find Leclair-Mussardo-type infinite form-factor series in integrable quantum field theory, and exact Euler-scale two-point functions of exponential fields in the sinh-Gordon model and of powers of the density field in the Lieb-Liniger model. We also analyze correlations in the partitioning protocol, extract large-time asymptotics, and, in free models, derive all Euler-scale $n$-point functions.

Publisher URL: http://arxiv.org/abs/1711.04568

DOI: arXiv:1711.04568v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.