5 years ago

New High Performance GPGPU Code Transformation Framework Applied to Large Production Weather Prediction Code.

Michel Müller, Takayuki Aoki

We introduce "Hybrid Fortran", a new approach that allows a high performance GPGPU port for structured grid Fortran codes. This technique only requires minimal changes for a CPU targeted codebase, which is a significant advancement in terms of productivity. It has been successfully applied to both dynamical core and physical processes of ASUCA, a Japanese mesoscale weather prediction model with more than 150k lines of code. By means of a minimal weather application that resembles ASUCA's code structure, Hybrid Fortran is compared to both a performance model as well as today's commonly used method, OpenACC. As a result, the Hybrid Fortran implementation is shown to deliver the same or better performance than OpenACC and its performance agrees with the model both on CPU and GPU. In a full scale production run, using an ASUCA grid with 1581 x 1301 x 58 cells and real world weather data in 2km resolution, 24 NVIDIA Tesla P100 running the Hybrid Fortran based GPU port are shown to replace more than 50 18-core Intel Xeon Broadwell E5-2695 v4 running the reference implementation - an achievement comparable to more invasive GPGPU rewrites of other weather models.

Publisher URL: http://arxiv.org/abs/1802.05839

DOI: arXiv:1802.05839v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.