5 years ago

Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems.

Xiaoou Zhang, Di Xiao, Wen-Yu Shan

We show that the exciton optical selection rule in gapped chiral fermion systems is governed by their winding number $w$, a topological quantity of the Bloch bands. Specifically, in a $C_N$-invariant chiral fermion system, the angular momentum of bright exciton states is given by $w \pm 1 + nN$ with $n$ being an integer. We demonstrate our theory by proposing two chiral fermion systems capable of hosting dark $s$-like excitons: gapped surface states of a topological crystalline insulator with $C_4$ rotational symmetry and biased $3R$-stacked MoS$_2$ bilayers. In the latter case, we show that gating can be used to tune the $s$-like excitons from bright to dark by changing the winding number. Our theory thus provides a pathway to electrical control of optical transitions in two-dimensional material.

Publisher URL: http://arxiv.org/abs/1709.08310

DOI: arXiv:1709.08310v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.