5 years ago

Experimental investigation of quantum key distribution protocols with twisted photons.

Berthold-Georg Englert, Duncan England, Frédéric Bouchard, Ebrahim Karimi, Robert Fickler, Robert W. Boyd, Khabat Heshami, Luis L. Sánchez-Soto

Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett & Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and a recently introduced differential phase shift (Chau15) protocol. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions. Our analysis gives an overview of the available quantum key distribution protocols for photonic orbital angular momentum and highlights the benefits of the presented schemes for different implementations and channel conditions.

Publisher URL: http://arxiv.org/abs/1802.05773

DOI: arXiv:1802.05773v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.