3 years ago

Half-Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dual-Native-Defects Engineering

Half-Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dual-Native-Defects Engineering
Huan Shan, Kejun Mu, Aidi Zhao, Yi Xie, Xiao Cheng Zeng, Zhe Sun, Yun Tong, Jun Dai, Yuqiao Guo, Changzheng Wu, Yi Liu
Two-dimensional transition metal dichalcogenides (TMDs) have been regarded as one of the best nonartificial low-dimensional building blocks for developing spintronic nanodevices. However, the lack of spin polarization in the vicinity of the Fermi surface and local magnetic moment in pristine TMDs has greatly hampered the exploitation of magnetotransport properties. Herein, a half-metallic structure of TMDs is successfully developed by a simple chemical defect-engineering strategy. Dual native defects decorate titanium diselenides with the coexistence of metal-Ti-atom incorporation and Se-anion defects, resulting in a high-spin-polarized current and local magnetic moment of 2D Ti-based TMDs toward half-metallic room-temperature ferromagnetism character. Arising from spin-polarization transport, the as-obtained T-TiSe1.8 nanosheets exhibit a large negative magnetoresistance phenomenon with a value of −40% (5T, 10 K), representing one of the highest negative magnetoresistance effects among TMDs. It is anticipated that this dual regulation strategy will be a powerful tool for optimizing the intrinsic physical properties of TMD systems. A dual-native-defects (Ti atom self-doping and Se defects) engineering strategy is proposed to introduce a spin polarized current and local magnetic moment into 2D nonmagnetic TiSe2, bringing half-metallic behavior with larger negative magnetoresistance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201703123

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.