5 years ago

Theory and applications of a more general form for fractional power series expansion

The latent potentialities and applications of fractional calculus present a mathematical challenge to establish its theoretical framework. One of these challenges is to have a compact and self-contained fractional power series representation that has a wider application scope and allows studying analytical properties. In this letter, we introduce a new more general form of fractional power series expansion, based on the Caputo sense of fractional derivative, with corresponding convergence property. In order to show the functionality of the proposed expansion, we apply the corresponding iterative fractional power series scheme to solve several fractional (integro-)differential equations.

Publisher URL: www.sciencedirect.com/science

DOI: S0960077918300444

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.