5 years ago

Modeling a combined forecast algorithm based on sequence patterns and near characteristics: An application for tourism demand forecasting

Tourism demand forecasting is essential for forward tourism planning. To develop appropriate public policies and ensure sound business investment decisions, both government administrations and private sector businesses use basic tourist demand forecasting to plan future operations and assess the need for facilities and infrastructure investment. Therefore, forecasting has become indispensable to tourism management. This study proposes a combined tourism forecasting model using an artificial neural network (ANN) and a clustering algorithm, which considers two aspects of the given data series: sequence patterns and near characteristics, which embody structural changes and time series correlations. Training data were clustered into homogenous groups, and for each cluster, a dedicated forecaster was employed. Several neighboring samples were then selected to capture the current changes in the data series trends. Finally, the two prediction results derived from the sequence patterns and near characteristics were combined to determine the final forecast results. To verify the superiority and accuracy of the proposed model, it was compared with three other ANN-based models and the most popular ARIMA model using three non-linear, non-stationary tourist arrivals data series. Experimental cases studies demonstrated that the proposed combination method consistently outperformed the other related methods.

Publisher URL: www.sciencedirect.com/science

DOI: S0960077918300286

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.