Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts
Abstract
The main indicator of dynamic balance is the \(\mathit{ZMP}\) . Its original notion assumes that both feet of the robot are in contact with the flat horizontal surface (all contacts are in the same plane) and that the friction is high enough so that sliding does not occur. With increasing capabilities of humanoid robots and the higher complexity of the motion that needs to be performed, these assumptions might not hold. Having in mind that the system is dynamically balanced if there is no rotation about the edges of the feet and if the feet do not slide, we propose a novel approach for testing the dynamic balance of bipedal robots, by using linear contact wrench conditions compiled in a single matrix (Dynamic Balance Matrix). The proposed approach has wide applicability since it can be used to check the stability of different kinds of contacts (including point, line, and surface) with arbitrary perimeter shapes. Motion feasibility conditions are derived on the basis of the conditions which the wrench of each contact has to satisfy. The approach was tested by simulation in two scenarios: biped climbing up and walking sideways on the inclined flat surface which is too steep for a regular walk without additional support. The whole-body motion was synthesized and performed using a generalized task prioritization framework.
Publisher URL: https://link.springer.com/article/10.1007/s11044-017-9572-9
DOI: 10.1007/s11044-017-9572-9
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.