5 years ago

Support vector machine with Dirichlet feature mapping

The Support Vector Machine (SVM) is a supervised learning algorithm to analyze data and recognize patterns. The standard SVM suffers from some limitations in nonlinear classification problems. To tackle these limitations, the nonlinear form of the SVM poses a modified machine based on the kernel functions or other nonlinear feature mappings obviating the mentioned imperfection. However, choosing an efficient kernel or feature mapping function is strongly dependent on data structure. Thus, a flexible feature mapping can be confidently applied in different types of data structures without challenging a kernel selection and its tuning. This paper introduces a new flexible feature mapping approach based on the Dirichlet distribution in order to develop an efficient SVM for nonlinear data structures. To determine the parameters of the Dirichlet mapping, a tuning technique is employed based on the maximum likelihood estimation and Newton’s optimization method. The numerical results illustrate the superiority of the proposed machine in terms of the accuracy and relative error rate measures in comparison to the traditional ones.

Publisher URL: www.sciencedirect.com/science

DOI: S0893608017302587

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.