5 years ago

Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition

Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition
Graphite-encapsulated Fe nanoparticles were synthesized using a combined method of high-energy ball milling and low-pressure chemical vapor deposition (LPCVD). Fe2O3 and graphite powders were milled to increase their surface areas and obtain a more homogeneous distribution. LPCVD was performed at a pressure of ∼0.57 Torr in a tube furnace under a CH4/H2 atmosphere at 1050 °C for 1 and 3 h. As-synthesized samples were purified in a 2 M HF solution. Characterization was performed using X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM) and alternating gradient magnetometry (AGM). XRD revealed the presence of body centered cubic (BCC) and face centered cubic (FCC) Fe phases without residual iron oxides. SEM confirmed the powders were better mixed and smaller after ball milling compared to mortar and pestle milled powders. High resolution TEM showed all nanoparticles had at least four and on average 16 graphitic layers, around an Fe core ranging from 20 to 300 nm. Magnetic measurements indicated that nanoparticles exhibit soft ferromagnetic behavior with low saturation magnetization (17–21 emu/g) and coercivity (110 Oe). A chemical stability test performed in a 2 M HCl solution showed that graphitic shells did not degrade, nor was there evidence of core dissolution or shell discontinuity.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317308291

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.