5 years ago

Rapid eradication of bacterial phytopathogens by atmospheric pressure glow discharge generated in contact with a flowing liquid cathode

Pawel Pohl, Anna Dzimitrowicz, Wojciech Sledz, Ewa Lojkowska, Agata Motyka, Piotr Jamroz
Diseases caused by phytopathogenic bacteria are responsible for significant economic losses, and these bacteria spread through diverse pathways including waterways and industrial wastes. It is therefore of interest to develop potent methods for their eradication. Here, antibacterial properties of direct current atmospheric pressure glow discharge (dc-APGD) generated in contact with flowing bacterial suspensions were examined against five species of phytopathogens. Complete eradication of Clavibacter michiganensis subsp. sepedonicus, Dickeya solani, and Xanthomonas campestris pv. campestris from suspensions of OD600≈0.1 was observed, while there was at least 3.43 logarithmic reduction in population densities of Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum. Analysis of plasma-chemical parameters of the dc-APGD system revealed its high rotational temperatures of 2300 ± 100 K and 4200 ± 200 K, as measured from N2 and OH molecular bands, respectively, electron temperature of 6050 ± 400 K, vibrational temperature of 4000 ± 300 K, and high electron number density of 1.1 × 1015 cm−1. In addition, plasma treatment lead to formation of numerous reactive species and states in the treated liquid, including reactive nitrogen and oxygen species such as NOx, NH, H2O2, O2, O, and OH. Further examinations revealed that bactericidal activity of dc-APGD was primarily due to presence of these reactive species as well as to UVA, UVB, and UVC irradiation generated by the dc-APGD source. Plasma treatment also resulted in an increase in temperature (from 24.2 to 40.2 °C) and pH (from 6.0 to 10.8) of bacterial suspensions, although these changes had minor effects on cell viability. All results suggest that the newly developed dc-APGD-based system can be successfully implemented as a simple, rapid, efficient, and cost-effective disinfection method for liquids originating from different industrial and agricultural settings. This article is protected by copyright. All rights reserved

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/bit.26565

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.