5 years ago

Nearshore hydrodynamics at pocket beaches with contrasting wave exposure in southern Portugal

Pocket beaches on rocky coasts with headlands that control hydro-sedimentary processes are considered to be constrained sedimentary systems, generally with limited sediment inputs. Pocket beaches face severe changes over time. Under worst-case scenarios, these changes can result in the loss of the beach, causing waves to directly attack adjacent cliffs. Studies of nearshore hydrodynamics can help to understand such changes and optimise sediment nourishment procedures. The present work contributes to the knowledge of hydrodynamic forcing mechanisms at pocket beaches by providing a comprehensive description of the nearshore circulation at two beaches with contrasting wave exposures. Two pocket beaches in southern Portugal were studied by combining field measurements of waves and currents with numerical models (STWAVE and BOUSS-2D). The aim of this analysis was to evaluate nearshore hydrodynamics under different wave exposure forcing conditions (e.g. variable wave heights/directions and different tidal levels). The results show that the beach circulation can rapidly shift from longshore-to rip-dominated depending on changes in both the offshore wave direction and tidal levels. Waves with higher obliquity (for both low and moderate wave energy conditions) tend to generate longshore circulation in all considered tidal stages, while waves with lower obliquity tend to produce rip flow with higher-velocity rip currents during low to intermediate tidal stages. The results indicate that the location and intensity of rip currents strongly depend on geomorphological constraints, that is, the control exerted by shore platforms. A larger morphological control is observed at mean sea level because most platforms are submerged/exposed during high/low tide and therefore exert less control on nearshore circulation.

Publisher URL: www.sciencedirect.com/science

DOI: S027277141730478X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.