5 years ago

Development of an upwinding kernel in SPH-SWEs model for 1D trans-critical open channel flows

In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or discontinuous solutions without the need of exactly adding artificial viscosity to the discretized equation. Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error between the discretized SPH equations and the original partial differential equations is minimized, thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed model has the ability of accurately predicting various open channel flows involving complicated transcritical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake of completeness.

Publisher URL: www.sciencedirect.com/science

DOI: S1570644315300599

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.