3 years ago

Semi-empirical modeling of microalgae photosynthesis in different acclimation states – Application to N. gaditana

The development of mathematical models capable of accurate predictions of the photosynthetic productivity of microalgae under variable light conditions is paramount to the development of large-scale production systems. The process of photoacclimation is particularly important in outdoor cultivation systems, whereby seasonal variation of the light irradiance can greatly influence microalgae growth. This paper presents a dynamic model that captures the effect of photoacclimation on the photosynthetic production. It builds upon an existing semi-empirical model describing the processes of photoproduction, photoregulation and photoinhibition via the introduction of acclimation rules for key parameters. The model is calibrated against a dataset comprising pulsed amplitude modulation fluorescence, photosynthesis rate, and antenna size measurements for the microalga Nannochloropsis gaditana in several acclimation states. It is shown that the calibrated model is capable of accurate predictions of fluorescence and respirometry data, both in interpolation and in extrapolation.

Publisher URL: www.sciencedirect.com/science

DOI: S0168165617315882

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.