5 years ago

Analysis of coffee (Coffea arabica L.) performance in relation to radiation level and rate of nitrogen supply II. Uptake and distribution of nitrogen, leaf photosynthesis and first bean yields

Natural supply of nitrogen is often limiting coffee production. From the viewpoints of growth and biomass production, adequate nitrogen supply is important. Growing coffee under full sunlight not only enhances potential yields but also increases demands for nitrogen fertilizer, the extent of which is ill quantified. This paper provides a comprehensive analysis of N uptake and distribution, biomass production, photosynthetic characteristics of 2.5 years old trees and first bean yields of 3.5 years old coffee trees in response to four radiation treatments (30%–100% of full sun), factorially combined with four rates of nitrogen supply (0–88g tree−1 y−1). The experiment was arranged in a randomized split-split plot design and was conducted at Jimma University horticultural farm, Ethiopia, using three coffee varieties. With larger N application and higher level of radiation, more N was utilized and more biomass and yield were produced. The fertilizer-N recovery ranged from 7 to 17% and declined with larger N supply and increased with radiation level. Coffee trees provided with larger amount of N had higher amounts of N per unit leaf area, light-saturated rate of leaf photosynthesis and first bean yield compared to trees grown in low N supply and limited radiation. The relation between biomass and plant N content was conservative across coffee varieties and can be used to estimate N content from biomass or calculate required uptake to produce a given amount of biomass. Though testing of the relation for other climatic conditions is advisable, this relation can also be used in the development of process-based quantitative coffee tree growth models,. Achieving synchronies between N supply and coffee trees demand without excess or deficiency requires further investigation of options to improve the low nitrogen recovery.

Publisher URL: www.sciencedirect.com/science

DOI: S1161030117301521

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.