5 years ago

Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet

Crop models are increasingly being used as tools to simulate climate change effects or effects of virtual heat-tolerant cultivars; therefore it is important that upper temperature thresholds for seed-set, seed growth, phenology, and other processes affecting yield be developed and parameterized from elevated temperature experiments whether field or controlled-environment chambers. In this paper, we describe the status of crop models for dry bean (Phaseolus vulgaris L.), peanut (Arachis hypogaea L.), soybean (Glycine max L.), chickpea (Cicer arietinum L.), sorghum (Sorghum bicolor (L.) Moench), and millet (Pennisetum glaucum L. (R.) Br) in the Decision Support System for Agrotechnology Transfer (DSSAT) for response to elevated temperature by comparison to observed data, and we review where changes have been made or where needed changes remain. Temperature functions for phenology and photosynthesis of the CROPGRO-Dry Bean model were modified in 2006 for DSSAT V4.5, based on observed growth and yield of Montcalm cultivar grown in sunlit, controlled-environment chambers. Temperature functions for soybean and peanut models were evaluated against growth and yield data in the same chambers and found to adequately predict growth and yield, thus have not been modified since 1998 release of V3.5. The temperature functions for the chickpea model were substantially modified for many processes, and are updated for V4.6. The millet model was re-coded and modified for its temperature sensitivities, with a new function to allow the 8–10day period prior to anthesis to affect grain set, as parameterized from field observations. For the sorghum model, the temperature effect on grain growth rate was modified to improve yield and grain size response to elevated temperature by comparison to data in controlled-environment chambers. For reliable assessments of climate change impact, it is critically important to gather additional temperature response data and to update parameterization and code of all crop models including DSSAT.

Publisher URL: www.sciencedirect.com/science

DOI: S1161030117301247

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.