3 years ago

Vacuum-assisted headspace solid-phase microextraction: A tutorial review

Vacuum-assisted headspace solid-phase microextraction: A tutorial review
Headspace solid-phase microextraction (HSSPME) sampling under vacuum conditions is a new and effective approach to accelerate the extraction kinetics of analytes with a low affinity for the headspace. Vacuum-assisted HSSPME (Vac-HSSPME) evolved from this approach and the resulting methods were always found to yield high extraction efficiencies and very good sensitivities within short sampling times and at mild temperatures. Vac-HSSPME preserves the simplicity of regular HSSPME and the only extra step required is that of air-evacuating the sample container before or after introducing the sample. Moreover, fast implementation of the technique is possible when using the latest, simplified and easy to construct sample container that can hold constant low-pressure conditions for extended sampling times. The main objective of the current tutorial is to provide a general strategy that can be applied towards the development of new Vac-HSSPME methods. The most important outcomes of past theoretical investigations are highlighted and a simple criterion for predicting the effect of vacuum on HSSPME sampling of water or water-containing samples is outlined. This theoretical discussion is then used as a background to elucidate the combined effects of low sampling pressure and several other experimental parameters on HSSPME sampling. Specific implications unique to Vac-HSSPME are also discussed, providing practical tips and a troubleshooting guide to new users. The great benefits of adopting the Vac-HSSPME approach are further demonstrated by reviewing all past applications reporting the quantitative and/or qualitative determination of compounds with a low tendency to escape to the headspace in a variety of samples. Vacuum is a new experimental parameter to control and exploit during HSSPME method optimization. The potential applications of Vac-HSSPME in areas like food, environmental and biological analysis are numerous and still remain to be explored.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017307390

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.