3 years ago

Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites

Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites
Graphene-based polymer nanocomposites have demonstrated significant promise to create commercially viable electromagnetic interference (EMI) shielding to protect the next-generation of electronic materials from radiative pollution. In the present study, we carry out a systematic analysis of the dynamic mechanical, dielectric, electrical and X-band shielding properties of thermoplastic polyurethane (TPU) elastomer filled with amine functionalized graphene obtained by the rapid thermal expansion of graphite oxide. By preparation of nanocomposites based on modified and unmodified graphene using solution mixing and hot compression moulding, we demonstrate that the modification with 2-aminoethyl methacrylate enhances the EMI shielding from 14 to 25dB. We also show by fracture analysis, cross-sectional transmission electron microscopy and dynamic mechanical analysis that the modification significantly strengthens the interfacial interactions between TPU and the functionalized graphene at the same filler loading. We find that the dominant shielding mechanism is through absorption and discuss the correlation between the viscoelastic mechanical loss tangent and the more effective dissipation of absorbed EM radiation which might account for the discrepancy between the theoretically predicted and experimentally observed EMI SE.

Publisher URL: www.sciencedirect.com/science

DOI: S0014305717310868

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.