4 years ago

Enzyme delivery using protein-stabilizing and cell-penetrating 30Kc19α protein nanoparticles

Enzyme delivery using protein-stabilizing and cell-penetrating 30Kc19α protein nanoparticles
Nanoparticles (NPs) are an emerging strategy for drug delivery and have been studied for the delivery of various biomolecules, such as chemically synthesized drugs and therapeutic proteins. In particular, protein NPs are non-cytotoxic and biodegradable. Application of a full length recombinant 30Kc19 protein to human serum albumin (HSA) NPs has been shown to improve the cellular uptake and stability of the cargo enzyme. In this study, we demonstrate that drug delivery can be achieved with only the α-helix domain of the 30Kc19 protein (30Kc19α), and without the addition of HSA. Protein concentration and pH were crucial for NP generation. NPs had a uniformly spherical shape with an optimal diameter of 180–230nm, and released β-galactosidase in a sustained manner. The 30Kc19α protein provided stability to the cargo enzyme, and helped maintain the specific activity of the enzyme. X-gal staining showed effective delivery of β-galactosidase into human dermal fibroblasts. Non-cytotoxic property of the 30Kc19α protein demonstrates that such NPs could be a resourceful tool for delivering drugs to cells.

Publisher URL: www.sciencedirect.com/science

DOI: S1359511317308863

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.