4 years ago

Chirality-Selective Functionalization of Semiconducting Carbon Nanotubes with a Reactivity-Switchable Molecule

Chirality-Selective Functionalization of Semiconducting Carbon Nanotubes with a Reactivity-Switchable Molecule
YuHuang Wang, Mijin Kim, Lyndsey R. Powell
Chirality-selective functionalization of semiconducting single-walled carbon nanotubes (SWCNTs) has been a difficult synthetic goal for more than a decade. Here we describe an on-demand covalent chemistry to address this intriguing challenge. Our approach involves the synthesis and isolation of a chemically inert diazoether isomer that can be switched to its reactive form in situ by modulation of the thermodynamic barrier to isomerization with pH and visible light that resonates with the optical frequency of the nanotube. We found that it is possible to completely inhibit the reaction in the absence of light, as determined by the limit of sensitive defect photoluminescence (less than 0.01% of the carbon atoms are bonded to a functional group). This optically driven diazoether chemistry makes it possible to selectively functionalize a specific SWCNT chirality within a mixture. Even for two chiralities that are nearly identical in diameter and electronic structure, (6,5)- and (7,3)-SWCNTs, we are able to activate the diazoether compound to functionalize the less reactive (7,3)-SWCNTs, driving the chemical reaction to near exclusion of the (6,5)-SWCNTs. This work opens opportunities to chemically tailor SWCNTs at the single chirality level for nanotube sorting, on-chip passivation, and nanoscale lithography.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05906

DOI: 10.1021/jacs.7b05906

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.