5 years ago

London Dispersion Directs On-Surface Self-Assembly of [121]Tetramantane Molecules

London Dispersion Directs On-Surface Self-Assembly of [121]Tetramantane Molecules
Jeremy E. P. Dahl, Marvin Stiefermann, Peter R. Schreiner, Robert M. K. Carlson, Marina Šekutor, Daniel Ebeling, Jalmar Tschakert, André Schirmeisen
London dispersion (LD) acts between all atoms and molecules in nature, but the role of LD interactions in the self-assembly of molecular layers is still poorly understood. In this study, direct visualization of single molecules using atomic force microscopy with CO-functionalized tips revealed the exact adsorption structures of bulky and highly polarizable [121]tetramantane molecules on Au(111) and Cu(111) surfaces. We determined the absolute molecular orientations of the completely sp3-hybridized tetramantanes on metal surfaces. Moreover, we demonstrate how LD drives this on-surface self-assembly of [121]tetramantane hydrocarbons, resulting in the formation of a highly ordered 2D lattice. Our experimental findings were underpinned by a systematic computational study, which allowed us to quantify the energies associated with LD interactions and to analyze intermolecular close contacts and attractions in detail.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b05204

DOI: 10.1021/acsnano.7b05204

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.