3 years ago

A Highly Potent Antibacterial Agent Targeting Methicillin-Resistant Staphylococcus aureus Based on Cobalt Bis(1,2-Dicarbollide) Alkoxy Derivative

A Highly Potent Antibacterial Agent Targeting Methicillin-Resistant Staphylococcus aureus Based on Cobalt Bis(1,2-Dicarbollide) Alkoxy Derivative
Lubov Chekulaeva, Hong Yan, Vladimir Bregadze, Yun Chen, Youkun Zheng, Xuemei Wang, Igor Sivaev, Irina Kosenko, Weiwei Liu, Hui Jiang
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious superbug that is potentially life-threatening. Among conventional antibiotics, vancomycin is a “gold standard” agent used to treat serious MRSA infections. Such therapy, however, is often ineffective because of the emergence of less-susceptible strains. Therefore, the exploration of new antimicrobial agents, especially nonantibiotic drugs, to cope with the growing threat of MRSA has become an urgent necessity. Herein, we have investigated the possibility to develop a metallacarborane antimicrobial agent, cobalt bis(1,2-dicarbollide) alkoxy derivative (K121), and we have evaluated the relevant anti-MRSA behaviors. We demonstrated that K121 has a dose-dependent anti-MRSA activity with a low minimal inhibitory concentration of 8 μg/mL and a high selectivity over mammalian cells. In particular, a high bacteria-killing efficiency was observed with eradication of all MRSA cells within 30 min. In addition, K121 showed a high inhibition effect on the formation of bacterial biofilm. More importantly, unlike vancomycin, a repeated use of K121 would not induce drug resistance even after 20 passages of MRSA. The mechanistic study showed that K121 kills MRSA by inducing an increase in the reactive oxygen species (ROS) production and consequentially inducing irreversible damage to the cell wall/membrane, which ultimately leads to the death of MRSA. Our results suggested that K121 may be used as a promising nonantibiotic therapeutic agent against MRSA infections in future clinical practices.

Publisher URL: http://dx.doi.org/10.1021/acs.organomet.7b00426

DOI: 10.1021/acs.organomet.7b00426

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.