5 years ago

Theoretical Insights into Proton-Coupled Electron Transfer from a Photoreduced ZnO Nanocrystal to an Organic Radical

Theoretical Insights into Proton-Coupled Electron Transfer from a Photoreduced ZnO Nanocrystal to an Organic Radical
Soumya Ghosh, Sharon Hammes-Schiffer, James M. Mayer, Alexander V. Soudackov, Janelle Castillo-Lora
Proton-coupled electron transfer (PCET) at metal-oxide nanoparticle interfaces plays a critical role in many photocatalytic reactions and energy conversion processes. Recent experimental studies have shown that photoreduced ZnO nanocrystals react by PCET with organic hydrogen atom acceptors such as the nitroxyl radical TEMPO. Herein, the interfacial PCET rate constant is calculated in the framework of vibronically nonadiabatic PCET theory, which treats the electrons and transferring proton quantum mechanically. The input quantities to the PCET rate constant, including the electronic couplings, are calculated with density functional theory. The computed interfacial PCET rate constant is consistent with the experimentally measured value for this system, providing validation for this PCET theory. In this model, the electron transfers from the conduction band of the ZnO nanocrystal to TEMPO concertedly with proton transfer from a surface oxygen of the ZnO nanocrystal to the oxygen of TEMPO. Moreover, the proton tunneling at the interface is gated by the relatively low-frequency proton donor–acceptor motion between the TEMPO radical and the ZnO nanocrystal. The ZnO nanocrystal and TEMPO are found to contribute similar amounts to the inner-sphere reorganization energy, implicating structural reorganization at the nanocrystal surface. These fundamental mechanistic insights may guide the design of metal-oxide nanocatalysts for a wide range of energy conversion processes.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02642

DOI: 10.1021/acs.nanolett.7b02642

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.