5 years ago

Biomimetic Strategy To Reversibly Trigger Functionality of Catalytic Nanocompartments by the Insertion of pH-Responsive Biovalves

Biomimetic Strategy To Reversibly Trigger Functionality of Catalytic Nanocompartments by the Insertion of pH-Responsive Biovalves
Cornelia G. Palivan, Mariana Spulber, Anja Car, Tomaz Einfalt, Wolfgang Meier, Christoph Edlinger
We describe an innovative strategy to generate catalytic compartments with triggered functionality at the nanoscale level by combining pH-reversible biovalves and enzyme-loaded synthetic compartments. The biovalve has been engineered by the attachment of stimuli-responsive peptides to a genetically modified channel porin, enabling a reversible change of the molecular flow through the pores of the porin in response to a pH change in the local environment. The biovalve functionality triggers the reaction inside the cavity of the enzyme-loaded compartments by switching the in situ activity of the enzymes on/off based on a reversible change of the permeability of the membrane, which blocks or allows the passage of substrates and products. The complex functionality of our catalytic compartments is based on the preservation of the integrity of the compartments to protect encapsulated enzymes. An increase of the in situ activity compared to that of the free enzyme and a reversible on/off switch of the activity upon the presence of a specific stimulus is achieved. This strategy provides straightforward solutions for the development of catalytic nanocompartments efficiently producing desired molecules in a controlled, stimuli-responsive manner with high potential in areas, such as medicine, analytical chemistry, and catalysis.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02886

DOI: 10.1021/acs.nanolett.7b02886

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.