3 years ago

Intrinsic Defect Physics in Indium-based Lead-free Halide Double Perovskites

Intrinsic Defect Physics in Indium-based Lead-free Halide Double Perovskites
Bai-Xin Liu, Bing Huang, Jian-Bo Liu, Jian Xu
Lead-free halide double perovskites (HDPs) are expected to be promising photovoltaic (PV) materials beyond organic–inorganic halide perovskite, which is hindered by its structural instability and toxicity. The defect- and stability-related properties of HDPs are critical for the use of HDPs as important PV absorbers, yet their reliability is still unclear. Taking Cs2AgInBr6 as a representative, we have systemically investigated the defect properties of HDPs by theoretical calculations. First, we have determined the stable chemical potential regions to grow stoichiometric Cs2AgInBr6 without structural decomposition. Second, we reveal that Ag-rich and Br-poor are the ideal chemical potential conditions to grow n-type Cs2AgInBr6 with shallow defect levels. Third, we find the conductivity of Cs2AgInBr6 can change from good n-type, to poorer n-type, to intrinsic semiconducting depending on the growth conditions. Our studies provided important guidance for experiments to fabricate Pb-free perovskite-based solar cell devices with superior PV performances.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02008

DOI: 10.1021/acs.jpclett.7b02008

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.