3 years ago

Nanopipette-Based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells

Nanopipette-Based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells
Sumaira Hanif, Kang Wang, Li-Na Ji, Saud Asif Ahmed, Xing-Hua Xia, Jie Pang, Yue Zhou, Jin-Mei Yang, Hai-Ling Liu
Single cell analysis is essential for understanding the heterogeneity, behaviors of cells, and diversity of target analyte in different subcellular regions. Nucleolin (NCL) is a multifunctional protein that is markedly overexpressed in most of the cancer cells. The variant expression levels of NCL in subcellular regions have a marked influence on cancer proliferation and treatments. However, the specificity of available methods to identify the cancer biomarkers is limited because of the high level of subcellular matrix effect. Herein, we proposed a novel technique to increase both the molecular and spectral specificity of cancer diagnosis by using aptamers affinity based portable nanopipette with distinctive surface-enhanced Raman scattering (SERS) activities. The aptamers-functionalized gold-coated nanopipette was used to capture target, while p-mercaptobenzonitrile (MBN) and complementary DNA modified Ag nanoparticles (AgNPs) worked as Raman reporter to produce SERS signal. The SERS signal of Raman nanotag was lost upon NCL capturing via modified DNA aptamers on nanoprobe, which further helped to verify the specificity of nanoprobe. For proof of concept, NCL protein was specifically extracted from different cell lines by aptamers modified SERS active nanoprobe. The nanoprobes manifested specifically good affinity for NCL with a dissociation constant Kd of 36 nM and provided a 1000-fold higher specificity against other competing proteins. Furthermore, the Raman reporter moiety has a vibrational frequency in the spectroscopically silent region (1800–2300 cm–1) with a negligible matrix effect from cell analysis. The subcellular localization and spatial distribution of NCL were successfully achieved in various types of cells, including MCF-7A, HeLa, and MCF-10A cells. This type of probing technique for single cell analysis could lead to the development of a new perspective in cancer diagnosis and treatment at the cellular level.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02147

DOI: 10.1021/acs.analchem.7b02147

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.