3 years ago

Decomposition of Methanol on Mixed CuO–CuWO4 Surfaces

Decomposition of Methanol on Mixed CuO–CuWO4 Surfaces
N. Tsud, F.P. Netzer, S. Surnev, C. Drechsel, M. Blatnik
Mixed CuO(2 × 1)–CuWO4 layers on a Cu(110) surface have been prepared by the on-surface reaction of the CuO(2 × 1) surface oxide with adsorbed (WO3)3 clusters. The adsorption and decomposition of methanol on these well-defined CuO–CuWO4 surfaces has been followed by high-resolution X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), and temperature-programmed desorption (TPD) to assess the molecular surface species and their concentration, while the state of the surface oxide phases before and after methanol decomposition has been characterized by scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and XPS. Surface methoxy species form the primary methanol decomposition products, which desorb partly by recombination as methanol at 200–300 K or decompose into CHx and possibly CO. The most reactive surfaces are mixed CuO–CuWO4 phase, with CuWO4 coverages 0.5–0.8 monolayer, thus pointing at the importance of oxide phase boundary sites. In a minority reaction channel, a small amount of formaldehyde is detected on the CuWO4 surface. The CuWO4 oxide phase becomes modified as a result of reduction and a morphology transition triggered by the methanol decomposition, but the pristine surface state can be recovered by a postoxidation treatment with oxygen.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b06233

DOI: 10.1021/acs.jpcb.7b06233

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.