3 years ago

Ultrasensitivity of Water Exchange Kinetics to the Size of Metal Ion

Ultrasensitivity of Water Exchange Kinetics to the Size of Metal Ion
Yuno Lee, D. Thirumalai, Changbong Hyeon
Metal ions play a vital role in many biological processes. An important factor in these processes is the dynamics of exchange between ion bound-water molecules and the bulk. Although structural and dynamical properties of labile waters bound to metal ions, such as Na+ and Ca2+, can be elucidated using molecular dynamics simulations, direct evaluation of rates of exchange of waters rigidly bound to high charge density Mg2+, has been elusive. Here, we report a universal relationship, allowing us to determine the water exchange time on metal ions as a function of valence and hydration radius. The proposed relationship, which covers times spanning 14 orders of magnitude, highlights the ultrasensitivity of water lifetime to the ion size, as exemplified by divalent ions, Ca2+ (∼100 ps) and Mg2+ (∼1.5 μs). We show that even when structures, characterized by radial distributions are similar, a small difference in hydration radius leads to a qualitatively different (associative or dissociative) mechanism of water exchange. Our work provides a theoretical basis for determination of hydration radius, which is critical for accurately modeling the water dynamics around multivalent ions, and hence in describing all electrostatically driven events such as ribozyme folding and catalysis.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04198

DOI: 10.1021/jacs.7b04198

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.