3 years ago

Shear Effects on Stability of DNA Complexes in the Presence of Serum

Shear Effects on Stability of DNA Complexes in the Presence of Serum
Shuang Yang, Wei Pan, Dehai Liang, Yudan Yin, Hao Wen, Qiuhong Yu
The behavior of nanocarriers, even though they are well-defined at equilibrium conditions, is unpredictable in living system. Using the complexes formed by plasmid DNA (pDNA) and K20 (K: lysine), protamine, or polylysine (PLL) as models, we studied the dynamic behavior of gene carriers in the presence of fetal bovine serum (FBS) and under different shear rates, a condition mimicking the internal physical environment of blood vessels. Without shear, all the positively charged complexes bind to the negatively charged proteins in FBS, leading to the formation of large aggregates and even precipitates. The behaviors are quite different under shear. The shear generates two effects: a mechanical force to break down the complex into smaller size particles above a critical shear rate and a stirring effect leading to secondary aggregation of complexes below the critical shear rate. In the studied shear rate from 100 to 3000 s–1, the mechanical force plays a key role in K20/pDNA and protamine/pDNA, while the stirring effect is dominant in PLL/pDNA. A model study shows that the interfacial tension, the chain density, and the elasticity of the complexes determine their responsiveness to shear force. This study is helpful to understand the fate of drug/gene carriers under physiological conditions. It also gains insight in designing drug/gene carriers with desirable properties for in vivo applications.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00900

DOI: 10.1021/acs.biomac.7b00900

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.