5 years ago

Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning

Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning
François-Xavier Coudert, Jack D. Evans
We show here that machine learning is a powerful new tool for predicting the elastic response of zeolites. We built our machine learning approach relying on geometric features only, which are related to local geometry, structure, and porosity of a zeolite, to predict bulk and shear moduli of zeolites with an accuracy exceeding that of force field approaches. The development of this model has illustrated clear correlations between characteristic features of a zeolite and elastic moduli, providing exceptional insight into the mechanics of zeolitic frameworks. Finally, we employ this methodology to predict the elastic response of 590 448 hypothetical zeolites, and the results of this massive database provide clear evidence of stability trends in porous materials.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02532

DOI: 10.1021/acs.chemmater.7b02532

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.