5 years ago

Development of sulfonamides incorporating phenylacrylamido functionalities as carbonic anhydrase isoforms I, II, IX and XII inhibitors

Development of sulfonamides incorporating phenylacrylamido functionalities as carbonic anhydrase isoforms I, II, IX and XII inhibitors
A series of novel sulfonamides incorporating phenylacrylamido functionalities were synthesized and investigated for the inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The physiologically and pharmacologically relevant human (h) isoforms hCA I and II (cytosolic isozymes), as well as the transmembrane tumor-associated hCA IX and XII were included in the study. These compounds showed low nanomolar or sub-nanomolar inhibition constants against hCA II (KIs in the range of 0.50-50.5 nM), hCA IX (KIs of 1.8-228.5nM), and hCA XII (KIs of 3.5-96.2 nM) being less effective as inhibitors of the off target isoform hCA I. A detailed structure-activity relationship study demonstrates that the nature and position of substituents present on the aromatic part of the scaffold strongly influence the inhibition of CA isoforms. As hCA II, IX and XII are involved in pathologies such as glaucoma and hypoxic, and metastatic tumors, compounds of the type reported in this work may be useful preclinical candidates.

Publisher URL: www.sciencedirect.com/science

DOI: S0968089617315201

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.